1.Albisetti, E. et al. Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems. Appl. Phys. Lett.113, 162401 (2018).
2.Albisetti, E. et al. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Communications Physics1, 56 (2018).
3.Schwemmer, C., Fringes, S., Duerig, U., Ryu, Y. K. & Knoll, A. W. Experimental Observation of Current Reversal in a Rocking Brownian Motor. Phys. Rev. Lett.121, 104102 (2018).
4.Skaug, M. J., Schwemmer, C., Fringes, S., Rawlings, C. D. & Knoll, A. W. Nanofluidic rocking Brownian motors. Science359, 1505–1508 (2018).
5.Kulmala, T. S. et al. Single-nanometer accurate 3D nanoimprint lithography with master templates fabricated by NanoFrazor lithography. SPIE Proceedings10584, 1058412 (2018).
6.Rawlings, C. D. et al. Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing. Nanotechnology (2018).
7.Lisunova, Y. & Brugger, J. Combination of thermal scanning probe lithography and ion etching to fabricate 3D silicon nanopatterns with extremely smooth surface. Microelectronic Engineering (2018).
8.Carroll, K. M., Knoll, A. W., Wolf, H. & Duerig, U. Explaining the Transition from Diffusion Limited to Reaction Limited Surface Assembly of Molecular Species through Spatial Variations. Langmuir (2017).
9.Carroll, K. M. et al. Testing the Equivalence between Spatial Averaging and Temporal Averaging in Highly Dilute Solutions. Langmuir (2017).
10.Rawlings, C. D. et al. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Scientific Reports (2017).
11.Ryu Cho, Y. K. et al. Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography. ACS Nano (2017).
12.Zimmermann, S. T., Balkenende, D. W. R., Lavrenova, A., Weder, C. & Brugger, J. Nanopatterning of a stimuli-responsive fluorescent supramolecular polymer by thermal scanning probe lithography. ACS Appl. Mater. Interfaces (2017).
13.Seniutinas, G. & Juodkazis, Saulius. Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies : Nanophotonics. Nanophotonics6, 923–941 (2017).
14.Podpirka, A. et al. Nanopatterning of GeTe phase change films via heated-probe lithography. Nanoscale9, 8815–8824 (2017).
15.Rawlings, C. et al. High throughput lithography using thermal scanning probes. in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 418–422 (2017).
16.Spieser, M., Rawlings, C., Lörtscher, E., Duerig, U. & Knoll, A. W. Comprehensive modeling of Joule heated cantilever probes. Journal of Applied Physics121, 174503 (2017).
17.Gottlieb, S. et al. Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology28, 175301 (2017).
18.Lisunova, Y., Spieser, M., Juttin, R. D. D., Holzner, F. & Brugger, J. High-aspect ratio nanopatterning via combined thermal scanning probe lithography and dry etching. Microelectronic Engineering180, 20–24 (2017).
19.Carroll, K. M. et al. Understanding How Charged Nanoparticles Electrostatically Assemble and Distribute in 1-D. Langmuir32, 13600–13610 (2016).
20.Albisetti, E. et al. Nanopatterning spin-textures: A route to reconfigurable magnonics. AIP Advances7, 055601 (2016).21.Albisetti, E. et al. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat Nano11, 545–551 (2016).
22.Menges, F. et al. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nature Communications7, ncomms10874 (2016).
23.Knoll, A., Rawlings, C., Spieser, M. & Duerig, U. Etch transfer into silicon of patterns with a half-pitch of under 20nm. in SPIE Newsroom (2016).
24.Paul, P. C. Thermal scanning probe lithography. Frontiers of Nanoscience11, 543–561 (2016).25.Albisetti, E. et al. Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology
27, 315302 (2016).26.Rawlings, C. et al. Accurate Location and Manipulation of Nanoscaled Objects Buried under Spin-Coated Films. ACS Nano9, 6188–6195 (2015).27.Rytka, C., Kristiansen, P. M. & Neyer, A. Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications. J. Micromech. Microeng.25, 65008–65023 (2015).28.Wolf, H. et al. Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. J.Vac. Sci. Technol. B33, 02B102 (2015).
29.Neuber, C. et al. Tailored molecular glass resists for scanning probe lithography. in 9425, 94250E-94250E–7 (2015).30.Ristic, S., Nannini, M., Paul, P., Holzner, F. & Grutter, P. Fabrication of Regular and Bi-Level Grating Fiber Couplers using Thermal Scanning Probe Lithography. in OSA Technical Digest (online) IT2A.4 (OSA, 2015).31.Rawlings, C., Duerig, U., Hedrick, J., Coady, D. & Knoll, A. W. Nanometer Accurate Markerless Pattern Overlay Using Thermal Scanning Probe Lithography. IEEE Trans. Nanotechnol.13, 1204–1212 (2014).32.Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol.9, 577–587 (2014).33.Rawlings, C., Duerig, U., Hedrick, J., Coady, D. & Knoll, A. Nanometer control of the markerless overlay process using thermal scanning probe lithography. in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 1670–1675 (2014).34.Knoll, A. W. et al. Closed-loop high-speed 3D thermal probe nanolithography. in (eds. Resnick, D. J. & Bencher, C.) 90490B (2014). , C. et al. Molecular glass resists for scanning probe lithography. in 9049, 90491V-90491V–9 (2014).36.Menges, F., Riel, H., Stemmer, A., Dimitrakopoulos, C. & Gotsmann, B. Thermal Transport into Graphene through Nanoscopic Contacts. Phys. Rev. Lett.111, 205901 (2013).37.Knoll, A. W. Nanoscale Contact-Radius Determination by Spectral Analysis of Polymer Roughness Images. Langmuir29, 13958–13966 (2013).38.Cheong, L. L. et al. Thermal Probe Maskless Lithography for 27.5 nm Half-Pitch Si Technology. Nano Lett.13, 4485–4491 (2013).39.Lee, W.-K. et al. Nanoscale Reduction of Graphene Fluoride via Thermochemical Nanolithography. ACS Nano7, 6219–6224 (2013).40.Carroll, K. M. et al. Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography. Langmuir29, 8675–8682 (2013).41.Ding, F., Stöferle, T., Mai, L., Knoll, A. & Mahrt, R. F. Vertical microcavities with high $Q$ and strong lateral mode confinement. Phys. Rev. B87, 161116 (2013).42.Holzner, F. et al. Thermal probe nanolithography: in-situ inspection, high-speed, high-resolution, 3D. in 8886, 888605-888605–9 (2013).
43.Menges, F., Riel, H., Stemmer, A. & Gotsmann, B. Quantitative Thermometry of Nanoscale Hot Spots. Nano Lett.12, 596–601 (2012).
44.Paul, P., Knoll, A. W., Holzner, F. & Duerig, U. Field stitching in thermal probe lithography by means of surface roughness correlation. Nanotechnology23, 385307 (2012).
45.Holzner, F. et al. Directed Placement of Gold Nanorods Using a Removable Template for Guided Assembly. Nano Lett.11, 3957–3962 (2011).
46.Kim, S. et al. Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates. Adv. Mater.23, 3786–3790 (2011).
47.Holzner, F. et al. High density multi-level recording for archival data preservation. Appl. Phys. Lett.99, 023110 (2011).
48.Paul, P. C., Knoll, A. W., Holzner, F., Despont, M. & Duerig, U. Rapid turnaround scanning probe nanolithography. Nanotechnology22, 275306 (2011).
49.Knoll, A. W. et al. Probe-Based 3-D Nanolithography Using Self-Amplified Depolymerization Polymers. Adv. Mater.22, 3361–3365 (2010).
50.Wei, Z. et al. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science328, 1373–1376 (2010).
51.Pires, D. et al. Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes. Science328, 732–735 (2010).
52.Lee, W. K., Dai, Z., King, W. P. & Sheehan, P. E. Maskless Nanoscale Writing of Nanoparticle−Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes. Nano Lett.10, 129–133 (2010).
53.Coulembier, O. et al. Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography. Macromolecules43, 572–574 (2010).
54.Gotsmann, B., Lantz, M. A., Knoll, A. & Dürig, U. Nanoscale Thermal and Mechanical Interactions Studies using Heatable Probes. in Nanotechnology (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).
55.nanotech06655.Knoll, A., Rothuizen, H., Gotsmann, B. & Duerig, U. Wear-less floating contact imaging of polymer surfaces. Nanotechnology21, 185701 (2010).
56.Wang, D. et al. Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects. Adv. Funct. Mater.19, 3696–3702 (2009).
57.Fenwick, O. et al. Thermochemical nanopatterning of organic semiconductors. Nat Nano4, 664–668 (2009).
58.Pires, D. et al. Ultraflat Templated Polymer Surfaces. Langmuir25, 5141–5145 (2009).
59.Szoszkiewicz, R. et al. High-Speed, Sub-15 nm Feature Size Thermochemical Nanolithography. Nano Lett.7, 1064–1069 (2007).
60.Knoll, A. et al. Integrating nanotechnology into a working storage device. Microelectronic Engineering83, 1692–1697 (2006).
61.Nelson, B. A., King, W. P., Laracuente, A. R., Sheehan, P. E. & Whitman, L. J. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett.88, 033104 (2006).
62.Basu, A. S., McNamara, S. & Gianchandani, Y. B. Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena22, 3217–3220 (2004).63.Vettiger, P. et al. The ‘Millipede’ – Nanotechnology Entering Data Storage. IEEE Trans. Nanotechnol.1, 39–55 (2002).
64.Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer. Available at: . (Accessed: 17th October 2018)